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Abstract

The structural analysis and design of a Timoshenko beam with tuned mass dampers (or TMDs) under a
harmonic excitation are presented. The dynamic-stiffness matrix of a Timoshenko-beam element is
employed to study the dynamic responses for the whole frequency range. A proposed simplified two-degree-
of-freedom system and Hartog’s method are employed to study the dynamic characteristics of TMDs.
Some important formulas for the design parameters (such as the mass ratio and stiffness ratio at the tuned
frequency, the optimal damping ratio of TMDs, and their upper limits) and a series of the design charts are
presented for practical applications, if the beam-own damping is absent and all TMDs are identical.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most simple and economic ways to control the vibration of a beam structure is the
so-called tuned mass damper (or TMD) [1–16], which is a single mass attached to the beam
structure by viscoelastic material or other mechanism of similar effect. The tuned mass damper
can be modelled as a simple mass–spring–dashpot system, the dynamic behaviors of a beam
structure with TMDs can then be easily formulated and analyzed by the finite-element method.
The dynamic stiffness matrix of an axial-loaded damped Timoshenko beam on viscoelastic
foundation has been established by the first author of this paper and applied to many engineering
problems [17–27]. All the effects of the rotary inertia of mass, the shear distortion, the constant
axial force, the viscoelastic foundation, and the various damping components can be taken into
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account in analysis. By the direct stiffness method as used in the standard structural analysis, the
stiffness matrix of an entire beam system can be obtained by the assembly of all the element
dynamic-stiffness matrices or partially with the element static-stiffness matrices. The conventional
finite element analysis employs the interpolation functions for beam deflection which are static in
nature, they are not reliable to define the dynamic behaviors of beam vibration in the high-
frequency range. The formulation of the dynamic stiffness matrix of a Timoshenko beam is based
on the exact dynamic displacement functions; therefore it is valid for the whole frequency range
including the high-frequency (or the high-mode) as well as the low-frequency (or the low-mode)
vibrations.
There are three important parameters of a tuned mass damper in design to control the beam

vibration, namely the mass ratio, stiffness, and damping ratio. In practice, the mass ratio of the
tuned mass damper to the beam is not much greater than 10%; therefore there are only two
parameters, i.e., the stiffness and the damping ratio of a tuned mass damper, need to be decided in
advance. In order to achieve the best performance of the tuned mass damper, these two
parameters should be chosen appropriately to make the beam vibration as small as possible. There
are two important methods to determine these two parameters to achieve the best performance of
a tuned mass damper, one is presented by Hartog [1] and the other by Jacquot and Hoppe [4].
Both methods can give the values of these two parameters at the optimal condition called the
tuned frequency (or the tuned frequency ratio) and the optimal damping ratio of a tuned mass
damper, respectively. The optimal condition of Hartog’s method is based on that the amplitude of
the steady state dynamic response under the harmonic excitation is minimum, whereas the
optimal condition of Jacquot and Hoppe’s method is based on that the mean-square response
under the white-noise random excitation is minimum. Some other methods have also been
proposed and the comparison between them can be found in Ref. [16].
In this paper both the dynamic stiffness of a Timoshenko beam and Hartog’s method are

employed to study a Timoshenko beam with TMDs under a harmonic excitation. The most
important mode, usually the fundamental one which dominates the beam vibration, should be
taken into account in the design of TMDs for vibrational control, a simplified two-degree-of-
freedom system is established and used to predict the design parameters of the tuned mass damper
at the optimal condition. Some important and useful formulas are derived, such as the upper
bounds of the mass ratio, stiffness, and damping ratio. Finally a series of design charts of the
tuned mass damper are presented and they might be very useful in practical design.

2. Equations of motions

A simply supported Timoshenko beam with several tuned mass dampers as shown in Fig. 1 and
subjected to a harmonic force is used as an example to set up the equations of motions for the
general case.
The symbols shown in this figure are defined as follows: m and J represent the mass and rotary

inertia of the mass per unit length of the beam; k0A and I the effective shear area and second
moment of area of the beam section; E and G Young’s and shear moduli of the beam; mn; kn; cn;
and xn the mass, stiffness, damping, and the position of the nth TMD; Mj and xj the concentrated
mass and its location on the beam; and c the length of the beam, respectively.
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The dynamic-stiffness matrix of a Timoshenko-beam element [20] is employed to study the
dynamic behaviors of the beam with TMDs. The beam of length c should be divided into several
beam elements [23] including the section between two successive TMDs and the section between
the support and its nearby TMD. The vertical motion of the mass of each TMD is considered as a
degree of freedom of displacement included in analysis. Applying the procedure of the direct
stiffness method, the dynamic stiffness matrix of an entire beam structure with all TMDs can be
accomplished by superposing the contributions from all of the beam elements and the TMDs
affected by each individual nodal displacement. The stiffness equation of the beam with TMDs
can be obtained and expressed in the form as used in the standard structural analysis, i.e.,

½K�fDg ¼ fFg; ð1Þ

where ½K�; fDg and fFg represent the dynamic-stiffness matrix, the nodal displacement vector, and
the nodal force vector, respectively.

3. Simplified two-degree-of-freedom system

The most simple way to achieve the vibrational reduction of a beam is to add one or several
TMDs to the beam properly. In most cases the fundamental mode or the first important mode of
the beam is probably the most important one which should be taken into account in the design of
the TMDs. In practice, the ratio of the total mass of TMDs to that of a beam should not be much
greater than 10%. Therefore, the change of the vibrational mode shape of the beam due to TMDs
could not be significant. For this reason the vibration of the beam with TMDs could be assumed
as

uiðx; tÞ ’¼fiðxÞyiðtÞ;

yiðx; tÞ ’¼ciðxÞyiðtÞ;

uniðx; tÞ ¼ yniðtÞ; n ¼ 1–N; ð2Þ

where uiðx; tÞ and yiðx; tÞ represent the transverse and rotational displacements of the beam with
TMDs; fiðxÞ and ciðxÞ the corresponding mode shapes of the beam without TMDs; yiðtÞ the
generalized co-ordinate (or the amplitude) of the beam with TMDs; uniðtÞ and yniðtÞ the vertical
displacement and the generalized co-ordinate (or amplitude) of the nth TMD. The subscripts n

and i denote the nth TMD and the ith vibrational mode, respectively.
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Fig. 1. A Timoshenko beam with TMDs.
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Applying Hamilton’s principle, the equations of motion of the beam with TMDs for the ith
mode, if a harmonic force F0e

iot is acting at the position x0 on the beam, can be obtained and
described by the generalized co-ordinates yiðtÞ and yniðtÞ ðn ¼ 1–N) as following:
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The steady state response of Eq. (3) can be expressed by
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Since the submatrices mn; cn; and kn shown in Eq. (3) are all diagonal, every response Yni (n ¼
1–N) of TMDs is related to the response Y only. Therefore Eq. (3) can be reduced to

K11 K12

K21 K22

" #
Y

Ym

( )
¼

F0fiðx0Þ=m�

0

( )
2
1

; ð6Þ

where Ym represents the response of a reference TMD located at xm on the beam.
The ðN þ 1Þ-degree-of-freedom system as described by Eq. (3) can then be simplified to a

two-degree-of-freedom system as described by Eq. (6). All the parameters of TMDs could be
determined much easily by this simplified two-degree-of-freedom system. The approximation of
this simplified two-degree-of-freedom system is based on the assumption that the change of the

ARTICLE IN PRESS

Y.-H. Chen, Y.-H. Huang / Journal of Sound and Vibration 278 (2004) 873–888876



vibrational mode shape due to TMDs is not significant. In general, this assumed mode shape (i.e.,
the mode shape of the beam without TMD) would provide a quite good approximation in practice
due to the upper limit of the mass ratio of TMDs, usually 15%. Of course, the result can be
improved easily by the iterative calculation.
If all TMDs are identical and each has the mass mt; spring constant kt; and dashpot damping ct;

K11; K12; K21; and K22 are given as follows:

K11 ¼o2
0 1� b2 þ mf2

i ðxmÞf 2 þ i2xf bmf2
i ðxmÞ �

mb2ð f 2 þ i2xf bÞ

f 2 � b2 þ i2xf b

XN

n¼1
nam

f2
i ðxnÞ

2
64

3
75;

K12 ¼ � o2
0mfiðxmÞð f 2 þ i2xf bÞ;

K21 ¼ � o2
0fiðxmÞð f 2 þ i2xf bÞ;

K22 ¼o2
0ð f 2 � b2 þ i2xf bÞ; ð7Þ

where
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mt
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2mtot
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s
;

o0 ¼
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k�

m�

r
; b ¼

o
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: ð8Þ

The determinant of the stiffness matrix on the left side of Eq. (6) is given by

jK j ¼ o4
0½b

4 � ð1þ s f 2Þb2 þ f 2 þ ið2xf bÞð1� s b2Þ�; ð9Þ

where

s ¼ 1þ m
XN

n¼1

f2
i ðxnÞ: ð10Þ

Eq. (6) shows the equations of motions of the simplified two-degree-of-freedom system. The
responses Y and Ym can be obtained easily and given as

Y ¼
F0fiðx0Þ

k�
a þ ibx
c þ iex

� �
;

Ym ¼
F0fiðx0Þ

k�
fiðxmÞ

f 2 þ ibx
c þ iex

� �
; ð11Þ

where

a ¼ f 2 � b2; b ¼ 2 f b;

c ¼ b4 � ð1þ sf 2Þb2 þ f 2; e ¼ 2f bð1� sb2Þ: ð12Þ

The response amplitudes of the beam Y and the reference TMD Ym can be expressed in terms of
the static and dynamic terms, i.e.,

jY j ¼ YstD; jYmj ¼ Yst Dm; ð13Þ
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where

D ¼
a2 þ b2x2

c2 þ e2x2

� �1=2

;

Dm ¼ fiðxmÞ
f 4 þ b2x2

c2 þ e2x2

� �1=2

;

Yst ¼
F0

k�
fiðx0Þ: ð14Þ

In the foregoing equation D and Dm are defined as the dynamic magnification factor and the
displacement transmissibility, respectively.
The force transmissibility at support is defined as the ratio of the dynamic reaction (or the

dynamic shear force at the beam end) to the static one.

4. Mass and stiffness of TMD at tuned frequency

No matter the value of the damping ratio x of TMD, the D–b curve described by Eq. (14)
always pass through two fixed points. These two fixed points can be determined by setting x ¼ 0
or 1.0, which yields the following condition as

a2

c2
¼

b2

e2
: ð15Þ

The foregoing condition gives two equations as ae � bc ¼ 0 and ae þ bc ¼ 0; the former one yields
b ¼ 0 which is meaningless; the latter one yields the result as

b4 � Bb2 þ C ¼ 0; ð16Þ

where

B ¼
2ð1þ sf 2Þ
ð1þ sÞ

; C ¼
2f 2

ð1þ sÞ
: ð17Þ

Only the two positive real roots of Eq. (16) can give the two values of b of the two fixed points on
the D–b curve. If these two fixed points are assigned as ðba;DaÞ and ðbb;DbÞ; substituting Eq. (15)
into Eq. (14) and setting x ¼ 0 gives the condition for Da ¼ Db as follows:

b

e

� �
b¼ba

¼ 7
b

e

� �
b¼bb

: ð18Þ

The positive or negative term in the right side of Eq. (18) yields the following results: ba ¼ bb or
b2a þ b2b ¼ 2=s: The former one is meaningless, and the latter one shows the relationship between
the two values of b of the two fixed points for the condition Da ¼ Db: The sum of two roots of
Eq. (16) gives b2a þ b2b ¼ 2ð1þ sf 2Þ=ð1þ sÞ: Therefore these two equations of ðb2a þ b2bÞ gives the
tuned-frequency ratio of each TMD as

ftuned ¼
1

s
¼

1

1þ mr
; ð19Þ
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where

r ¼
XN

n¼1

f2
i ðxnÞ: ð20Þ

As the effective mass ratio m decreases and approaches zero, the tuned-frequency ratio of each
TMD increases and approaches unity. The tuned-frequency ratio is also dependent of the modal
shape fi and the position xn where each TMD is attached to the beam.
The relationship between the effective mass ratio m and the effective stiffness ratio k; i.e.,

k ¼ kt=k�; of each TMD at the tuned condition can be derived from Eq. (19) and given as

m1;2 ¼
ð1=k� 2rÞ8½ð1=k� 2rÞ2 � 4r2�1=2

2r2
: ð21Þ

Only the negative term on the right side of Eq. (21) will give the convergent real value of m under
the following condition:

kp
1

4r
: ð22Þ

The discussions of the application of Eqs. (21) and (22) will be given by a practical example
included in this paper.
The effective stiffness ratio k of each TMD at the tuned condition can be obtained in terms of m

from Eq. (21) and given as

k ¼
m

ð1þ mrÞ2
: ð23Þ

Therefore the upper limit of the effective mass ratio m is given by

mp
1

r
: ð24Þ

The co-ordinates of the two fixed points on the D–b curve at the tuned condition can be
determined accordingly as

b2a;b ¼
1

s
8
1

s

ffiffiffiffiffiffiffiffiffiffiffi
s � 1

s þ 1

r
; Da ¼ Db ¼

ffiffiffiffiffiffiffiffiffiffiffi
s þ 1

s � 1

r
; ð25Þ

where

s ¼ 1þ mr: ð26Þ

5. Optimal damping ratio of TMD

Once the design parameters of each TMD, namely the effective mass ratio m and the effective
stiffness ratio k at the tuned condition, have been estimated by Eqs. (21) and (23), the dynamic
responses or the dynamic-magnification factor D and the displacement transmissibility Dm can be
all calculated by Eq. (1) or (14) for any value of the damping ratio x of each TMD. All the D–b
curves for the different damping ratio x pass the two fixed points of equal D: If the peaks of the
D–b curve locate at and coincide with these two fixed points for a certain value of x; it will result in
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the minimum response of the beam, and this damping ratio is called the optimal damping ratio of
each TMD [1]. In general cases both the two peaks of the D–b curve could not coincide with the
two fixed points simultaneously for any value of x; but they might be very close to each other for a
certain value of x: Eq. (14) can be rewritten as

x2 ¼
c2D2 � a2

b2 � e2D2
; ð27Þ

where a; b; c; and e are all functions of b:
Replacing b2 by ðb2 þ eÞ; where e is a very small number, and omitting all the high-order terms

of e; finally Eq. (27) becomes

x2 ¼
ðs � 1Þ½3� ð1þ 2sÞsb2�

4s½2� ð1þ sÞsb2�
: ð28Þ

The two values of b2 assigned as b2a and b2b at the two fixed points of equal D (or at the tuned
condition) is given by Eq. (25). Therefore the damping ratio for the maximum of D located at each
one of the two fixed points are given as

x2a;b ¼
ðs � 1Þ 38

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs � 1Þ=ðs þ 1Þ

p� �
8s

: ð29Þ

According to Hartog’s method [1], the average of x2a and x2b could give the optimal damping ratio
of TMD as

x0 ¼ ½3ðs � 1Þ=8s�1=2: ð30Þ

6. Example and discussion

A simply supported rectangular steel beam has the following properties: beam length c ¼
100 cm; beam width b ¼ 3 cm; beam depth d ¼ 2 cm; beam density r ¼ 7800 kg=m3; Young’s
modulus E ¼ 2
 1011 N=m2; the Poisson ratio n ¼ 0:3; and the shape factor for shear k0 ¼ 0:87:
The fundamental mode of the beam is taken into account in the design of TMDs for the
vibrational control by adding one, three or five identical TMDs to the beam as shown in Fig. 2
under investigation. The total mass of TMDs is constant for each case and equals 10% of the
beam mass. The tuned stiffness and optimal damping ratio of each TMD are determined by
Eqs. (23) and (30), and the results are given in Table 1. The natural frequencies (oi’s), modal
damping ratios (Zi’s), and mode shapes of the six lowest modes of the beam with or without TMD
are all shown in Fig. 2. The natural frequencies shown inside the brackets are the results of the
simplified two-degree-of-freedom system using the mode shape of the beam without TMDs, and
they are very close to the exact solutions. It can be obviously found in Fig. 2 that the fundamental
mode of the beam without TMD will be split into two independent modes, when TMDs are
designed and attached to this beam. All the high-mode natural frequencies are very close to each
other of the beam with or without TMD. It can also be seen that all the mode shapes of these three
cases look very similar each other and their differences are not significant due to TMDs. The
percentages of the values of the modal damping ratios (Zi’s) are also given in Fig. 2. The
Timoshenko beam is assumed undamped, the damping is only coming from TMDs. The modal
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damping ratios of the Timoshenko beam with TMDs are about 12–20% for the first two
vibrational modes, and they are very small and less than about 0.1% for the higher modes. It
means that TMD is very effective for the fundamental or the first important mode of the beam
which is desired to be controlled, and it is not effective for the higher modes.
If a unit harmonic force is applied at the center of the beam which is the most important case in

general. The dynamic magnification factor D at the center of the beam, the displacement
transmissibility Dm of the middle TMD, and the force transmissibility Tf at the left support are
shown in Figs. 3, 4 and 5, respectively. It can be seen that the single-TMD case (or the case of
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Fig. 2. Mode shapes.

Table 1

Three cases of a simply supported beam with TMDs

Case mt ¼
mt

mc
m ¼

mt

m� k ¼
kt

k�
kt (N/m) xo mt;max kt;max xmax

TMD-1 0.100 0.200 0.1389 27058.08 0.250 0.5000 48704.55 0.4329

TMD-3 0.033 0.067 0.0478 9320.20 0.239 0.1847 17991.36 0.4329

TMD-5 0.020 0.040 0.0303 5910.04 0.220 0.1349 13138.15 0.4329
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TMD-1) is not only the most effective to control the beam vibration but also beneficial to the
TMDs vibration and the support reaction. The higher-frequency (or higher-mode) performance of
TMDs are also shown in Figs. 3–5. The results of D and Tf seem to be too high, this is due to the
facts that the beam is presumed undamped and TMDs are designed for the first mode; therefore
TMDs are much less effective for the higher modes. Actually, the beam-own damping will play an
important role for higher modes and suppress the beam vibration within a certain limit. The
results of D; Dm; and Tf in these figures can also reflect an important fact that the performance of
the case of TMD-1 is the best for both the low-mode as well as the high-mode vibrations. The
small beam-own damping could not influence the results of the low-mode vibration significantly,
but it will dominate the high-mode vibration. The structural analysis of a Timoshenko beam with
TMDs can include the effect of the beam-own damping and the responses can be calculated
numerically, however the explicit formulas presented in this paper would still provide a good
initial approximation of the design of TMDs.
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The relationship between the effective mass and stiffness ratios, m and k; of TMDs is given by
Eq. (21). m1 and m2 are calculated by use of Eq. (21) and the results are shown in Fig. 6 for the case
of a single TMD at the center of the beam (namely, the case of TMD-1). Both m1 and m2 are real, if
the stiffness of TMD is less than a certain limit, i.e., ktpkt; max ¼ 48704:55 N=m calculated by
Eq. (22). Only m1 is convergent and useful for the practical design of TMD. Both m1 and m2 are
complex if ktokt; max; it means that the stiffness of TMD is too strong to absorb any vibrational
energy from the beam, and both the beam and TMD will move together for this situation. The
m1–k curves for all cases assigned as TMD-1, TMD-3 and TMD-5 are all shown in Fig. 7. The
maximum values of the mass, stiffness, and damping ratio of each TMD are calculated by
Eqs. (24), (22) and (30), and the results are also given in Table 1.
If we consider the mass ratio ðmtÞ; stiffness ðktÞ; and damping ratio ðxÞ of each TMD as the

design parameters, and D; Dm; and Tf as the control indexes for a specific loading condition such
as a unit harmonic load acting at the midspan of the beam for an example, the design curves of
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TMD for the three cases of TMD-1, TMD-2, and TMD-3 can be established and shown in
Figs. 8–11. These design curves can be very convenient and useful in practice. It can be seen that
the dynamic magnification factor D is almost inversely proportional to the design parameters mt;
kt and, x: The increasing ratio of mt becomes very high if mt is greater than a certain limit (say
about 15%) and beyond this limit the decreasing rate of D becomes very small. This means that it
is not economical to design a heavy TMD or several heavy TMDs (say mt > 15%). The design will
fail if mt or kt is greater than its maximum value (or called the design limit). This is the reason that
both the beam and TMDs will move in the same direction due to the hard spring of high value of
kt tying the beam and TMDs together while vibration, and thus the energy absorbed by TMDs is
very limited. The relationship between x and kt is almost linear in the most practical design range,
and the relationship between mt and kt is also almost linear as mtp10% (see Figs. 8–11). It is very
interesting to note from Figs. 8–10 that the reaction force at beam support has a minimum at a
certain condition. In order to avoid much of the vibrational energy of the beam transmitting to
the beam support and keep the environment in quiet condition, the curve of Tf as shown in these
figures can provide an important design guide for this purpose. The minimum of the left-support
reaction ðTf Þ lies near to the center of the design range of kt as shown in Figs. 8–10, the
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corresponding values of mt; D; x; and Dm seem to be reasonable in practical design, especially for
the case of TMD-1 which is the most effective compared with the other two as mentioned
previously.
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If a harmonic moment Moe
iwt is applied at the position x0 on the beam, the generalized force

given by Eq. (4) should be replaced by P� ¼ MociðxiÞeiwt: All formulas presented in this paper are
still valid except the terms Po and fiðx0Þ should be replaced by Mo and ciðxiÞ; respectively. The
design curves for the case TMD-1 are shown in Fig. 12, if a unit harmonic moment is acting at the
quarter of the beam i.e., Mo ¼ 1 and xo ¼ c=4: All the corresponding values of mt; x; D; Dm; and
Tf also seem to be reasonable in practice, when the value of kt is about the half of its maximum
value kt;max:

7. Conclusions

Some important conclusions would be drawn from this study and given as follows:

(1) The dynamic stiffness matrix of a Timoshenko beam and the approximate model of the
simplified two-degree-of-freedom system would be successfully employed for the structural
analysis and design of a Timoshenko beam with TMDs in practice for the whole frequency
range including the low-frequency (or low-mode) as well as the high-frequency (or high-
mode) vibrations.

(2) The approximate mode shape of the Timoshenko beam without TMD can be employed to
establish the simplified two-degree-of-freedom system to predict the design parameters of
TMDs, if the total mass ratio of TMDs is less than a certain limit (say 15%). Of course, the
results can be improved by the iterative calculation.

(3) The tuned frequency and the optimal damping ratio of TMDs, and the upper bounds of the
TMDs properties (i.e., the mass, stiffness, and damping) can be predicted either by Hartog’s
method or by Jacquot and Hoppe’s method. The former one is based on the minimization of
the amplitude of the steady state response under the harmonic excitation, whereas the latter
one is based on the minimization of the mean-square response under the white-noise random
excitation.

(4) The natural frequencies and mode shapes of a Timoshenko beam are the basic important
informations for the design of TMDs to control the beam vibration. Whether a single or
multiple TMDs should be designed to control the beam vibration, it should depend on the
mode shape of the beam which is desired to be controlled. Of course, the position of the
harmonic exciting force or moment and the control point on the beam should also be taken
into account.

(5) There is an upper bound of the mass ratio of TMDs. The design will fail if the mass ratio of
TMDs is beyond this limit. It means that the required spring of TMDs for this case is too
strong to absorb the energy from the beam vibration. Both the beam and TMDs will move
together in the same direction due to the hard spring of high stiffness tying them together
while vibration.

(6) It is not economic to design a heavy TMD system, say total mtX15%: The decreasing rate of
D of the beam vibration becomes small, but on the contrary the increasing rate of mt becomes
tremendously large as mt beyond this limit.

(7) A good design can provide both the vibrations of the beam and TMDs as small as possible,
not only for the low frequency, but also for the high frequency.
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(8) The design ranges of the TMDs properties, i.e., the mass, and stiffness, become smaller and
less flexible, if more TMDs are used (also see Fig. 11).

(9) The design curves presented in this paper would provide the important informations for the
design of the tuned-mass dampers attached to a Timoshenko beam for vibrational control.
All the corresponding values of mt; x; D; Dm; and Tf seem to be reasonable and acceptable,
if the value of kt is about the half of its maximum value kt; max: This might be a design guide
in practice, however the final design of TMDs should be made by the designer’s experience
and judgement.

(10) There are two damping components of a Timoshenko beam system with TMDs, one is
coming from TMDs and other from the beam structure. The latter can be included in
structural analysis and the response can be calculated numerically, but the explicit formulas
might be difficult to be derived. However the formulas presented in this paper can still
provide a good approximation at first before the design of TMDs, if the damping of the
beam structure should be included.

(11) If all TMDs are not identical, Eq. (6) is still valid for this case. The formulas presented in this
paper should be modified and it is considered as an extension or the future study of this
paper.
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